Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.087
Filter
1.
Organ Transplantation ; (6): 19-25, 2024.
Article in Chinese | WPRIM | ID: wpr-1005229

ABSTRACT

Renal allograft fibrosis is one of the common and severe complications after kidney transplantation, which seriously affects the function and survival rate of renal allograft, and may even lead to organ failure and patient death. At present, the researches on renal allograft fibrosis are highly complicated, including immunity, ischemia-reperfusion injury, infection and drug toxicity, etc. The diagnosis and treatment of renal allograft fibrosis remain extremely challenging. In this article, the latest research progress was reviewed and the causes, novel diagnosis and treatment strategies for renal allograft fibrosis were investigated. By improving diagnostic accuracy and optimizing treatment regimen, it is expected to enhance clinical prognosis of kidney transplant recipients, aiming to provide reference for clinicians to deliver proper management for kidney transplant recipients.

2.
Medicina (B.Aires) ; 83(supl.4): 3-8, oct. 2023. graf
Article in Spanish | LILACS-Express | LILACS | ID: biblio-1521194

ABSTRACT

Resumen Las novedades en el campo de los errores innatos del metabolismo (EIM) son espectaculares. Se han descrito nuevos EIM, se conoce mejor sus bases fisiopatológicas y las implicaciones para el organismo. Con la llegada de las nuevas técnicas de metabolómica, lípidomica y genómica se han multiplicado los avances en el diag nóstico y permiten explorar nuevas opciones terapéu ticas. Se ha establecido una nueva clasificación de los EIM en base a los más de 1.450 EIM identificados. Está irrumpiendo una nueva especialidad, que es la medici na metabólica. El cribado neonatal se estáempezando a universalizar y nos permite hoy en día, con tándem masas, el diagnóstico de más de 20 enfermedades me tabólicas del período neonatal que tienen opciones de tratamiento. Se están creando unidades de EIM para adultos para seguir niños con EIM que sobreviven a la enfermedad y con cada vez mejor calidad de vida y se diagnostican EIM que debutan en la adolescencia o laedad adulta. Aparecen las terapias personalizadas y las guías de práctica clínica para muchos EIM. Finalmente están emergiendo cada vez nuevas opciones terapéuticas que permiten una mayor supervivencia y mejor calidad de vida. La terapia génica convencional ya se está aplicando en algunos EIM.Sin embargo, las estrategias de edición de genes con terapias de ARN pueden permitir corregir la mutación genética mini mizando los problemas asociados con la terapia génica de compensación convencional.


Abstract The advances in the field of inborn errors of metabo lism (IEM) are spectacular. New IEM have been described, their pathophysiological bases and implications for the organism are better known. With the advent of new metabolomics, lipidomics and genomics techniques, advances in diagnosis have multiplied and allow new therapeutic options to be explored. A new IEM classi fication has been established based on the more than 1.450 IEM identified. A new specialty is emerging, which is metabolic medicine. Neonatal screening is becom ing universal and allows us today, with tandem mass, to diagnose more than 20 metabolic diseases of the neonatal period, with treatment options. IEM units for adults are being created to follow-up children with IEM who survive the disease and with an increasingly better quality of life, and some IEM that start in adolescence or adulthood are diagnosed. Personalized therapies and clinical practice guidelines appear for any IEM. Finally, new therapeutic options are emerging day to day that allow a longer survival and better quality of life. Con ventional gene therapy is already being applied in some IEM. However, gene editing strategies with RNA thera pies may allow the correction of the genetic mutation, minimizing the problems associated with conventional compensation gene therapy.

3.
Medicina (B.Aires) ; 83(supl.4): 13-17, oct. 2023. graf
Article in Spanish | LILACS-Express | LILACS | ID: biblio-1521196

ABSTRACT

Resumen La terapia génica ha logrado avances significativos en el tratamiento de enfermedades genéticas, especial mente en enfermedades raras y monogénicas. Se han desarrollado y aprobado terapias génicas para tratar en fermedades como la atrofia muscular espinal, brindando esperanza a los pacientes y demostrando la eficacia de esta terapia. Actualmente, se están realizando numerosos ensayos clínicos para evaluar la seguridad y eficacia de la terapia génica en diversas enfermedades, particularmente en el campo de la neurología pediátrica. Estos estudios están generando datos alentadores y contribuyen al conoci miento sobre cómo mejorar las técnicas de terapia génica. A pesar de los avances, la terapia génica enfrenta desafíos importantes. Es una terapia costosa y téc nicamente compleja, lo que limita su accesibilidad. Además, aspectos como la entrega eficiente de genes, la respuesta inmunológica a los vectores y la duración de la respuesta terapéutica requieren mejoras. se está investigando activamente. En cuanto al futuro de la terapia génica, se espera que los avances en tecnología de edición génica, como CRISPR-Cas9, permitan una mayor precisión y eficiencia en la modificación de genes. Se espera que la investigación en vectores de terapia génica mejore la capacidad de entrega y la seguridad de los tratamientos. Se están desarrollando nuevas ge neraciones de vectores virales y no virales que podrían superar las limitaciones actuales y permitir una admi nistración más eficiente y precisa de genes terapéuticos.


Abstract Gene therapy has achieved significant advancements in the treatment of genetic diseases, especially in rare and monogenic diseases. Gene therapies have been de veloped and approved to treat diseases such as spinal muscular atrophy, offering hope to patients and dem onstrating the effectiveness of this therapy. Currently, numerous clinical trials are being conduct ed to evaluate the safety and efficacy of gene therapy in various diseases, particularly in the field of pediatric neurology. These studies are generating encouraging data and contributing to the knowledge on how to im prove gene therapy techniques. Despite the advancements, gene therapy faces significant challenges. It is a costly and technically complex therapy, limiting its accessibility. Addition ally, aspects such as efficient gene delivery, immune response to vectors, and duration of therapeutic re sponse require improvements and are actively being investigated. Regarding the future of gene therapy, advances in gene editing technology, such as CRISPR-Cas9, are ex pected to allow for greater precision and efficiency in gene modification. Research on gene therapy vectors is expected to en hance the delivery capacity and safety of treatments. New generations of viral and non-viral vectors are be ing developed that could overcome current limitations and enable more efficient and precise administration of therapeutic genes.

4.
Rev. invest. clín ; 75(1): 13-28, Jan.-Feb. 2023. graf
Article in English | LILACS-Express | LILACS | ID: biblio-1450099

ABSTRACT

ABSTRACT CRISPR/Cas genes evolved in prokaryotic organisms as a mechanism of defense designed to identify and destroy genetic material from threatening viruses. A breakthrough discovery is that CRISPR/Cas system can be used in eukaryotic cells to edit almost any desired gene. This comprehensive review addresses the most relevant work in the CRISPR/Cas field, including its history, molecular biology, gene editing capability, ongoing clinical trials, and bioethics. Although the science involved is complex, we intended to describe it in a concise manner that could be of interest to diverse readers, including anyone dedicated to the treatment of patients who could potentially benefit from gene editing, molecular biologists, and bioethicists. CRISPR/Cas has the potential to correct inherited diseases caused by single point mutations, to knock-in the promoter of a gene whose expression is highly desirable or knockout the gene coding for a deleterious protein. CRISPR/Cas technique can also be used to edit ex vivo immune cells and reinsert them in patients, improving their efficiency in attacking malignant cells, limiting the infectious potential of viruses or modulating xenotransplant rejection. Very important bioethical considerations on this topic include the need to internationally regulate its use by ad hoc expert committees and to limit its use until safety and bioethical issues are satisfactorily resolved.

5.
China Pharmacy ; (12): 122-128, 2023.
Article in Chinese | WPRIM | ID: wpr-953731

ABSTRACT

Breast cancer is a malignant tumor that seriously threatens women’s health at present. Although surgical treatment is the most direct and effective, it is limited by many factors and needs to be assisted by other treatments. In addition to conventional radiotherapy, these adjuvant therapies also include chemotherapy, gene therapy, phototherapy and so on. However, the therapeutic agents used in these treatment methods have some limitations, such as poor water-solubility, instability and targeting. With the development of nano-technology, more and more researchers construct and study nano delivery system for breast tumor treatment, such as response system designed based on tumor microenvironment, temperature sensitive response system, nano delivery system based on specific proteins of tumor cell membrane, etc. The author summarizes the nano delivery system, and finds that these nano delivery systems can not only improve the water-solubility and stability of the therapeutic agents, but also accurately deliver them to the breast tumor site by targeted means, improve the efficacy and reduce toxic side effects, which provides new ideas for the treatment of breast cancer in the future.

6.
Chinese Journal of Applied Clinical Pediatrics ; (24): 553-556, 2023.
Article in Chinese | WPRIM | ID: wpr-990078

ABSTRACT

Primary ciliary dyskinesia (PCD) is an inherited disease characterized by impaired ciliary ultrastructure and function.Respiratory symptoms are the most important clinical manifestations of PCD.More than 50 pathogenic genes responsible for PCD have been identified, which have been contributed to clarify the etiology of PCD.At present, special therapy and gold standard for the diagnosis of PCD are scant.Gene therapy can restore ciliary function.Gene testing can identify the genetic etiology of PCD, and promote the development of individualized gene therapy.This review aims to summarize the research progress on genetic etiology of PCD and its genetic testing and gene therapy.

7.
Organ Transplantation ; (6): 201-2023.
Article in Chinese | WPRIM | ID: wpr-965042

ABSTRACT

As an effective treatment for end-stage liver disease, liver transplantation has been widely carried out worldwide and gradually captivated widespread recognition. With the advancement of liver transplantation techniques, the incidence of postoperative complications has been gradually declined, and the short-term and long-term prognosis of recipients have been constantly improved. However, a huge gap has existed between the supply and demand of donor organs, which is a major factors restricting the development of liver transplantation. The amount of liver transplantation operation in China is increasing year by year, the shortage of donor liver is becoming more and more prominent, and marginal donor liver is increasingly used in clinic. In recent years, the selection criteria of donor organs, organ preservation and functional maintenance have been continuously improved. In this article, the application and development trend of different techniques were reviewed from the perspectives of donor liver preservation and functional maintenance, and recent technical development and research results were summarized, aiming to provide reference for further enhancing the survival rate of grafts and recipients and promoting the development of liver transplantation in China.

8.
International Eye Science ; (12): 400-406, 2023.
Article in Chinese | WPRIM | ID: wpr-964237

ABSTRACT

Fundus vascular diseases, including neovascular age-related macular degeneration(nAMD)and diabetic retinopathy(DR), are the leading causes of visual impairment worldwide. With the accelerated aging and increased incidence of diabetes, the prevalence of these two fundus diseases will continue to rise. Currently, intraocular injection of anti-vascular endothelial growth factor(anti-VEGF)remains the first-line treatment for fundus vascular diseases, but disadvantages exist, such as frequent intraocular injections, high cost and poor compliance, thus more durable and effective therapeutic strategies need to be explored. The successful application of gene therapy in inherited retinal diseases(IRDs)provides a new idea for the treatment of fundus vascular diseases. With the ongoing of several clinical trials, gene therapy for fundus vascular diseases is expected to be employed in the clinical setting. But there still remain some concerns, including the optimal therapeutic targets selection, administration route and safety issues. This review focuses on the application and prospect of gene augmentation and gene editing-mediated anti-VEGF therapy for the treatment of nAMD and DR.

9.
Acta Pharmaceutica Sinica B ; (6): 2510-2543, 2023.
Article in English | WPRIM | ID: wpr-982869

ABSTRACT

CRISPR, as an emerging gene editing technology, has been widely used in multiple fields due to its convenient operation, less cost, high efficiency and precision. This robust and effective device has revolutionized the development of biomedical research at an unexpected speed in recent years. The development of intelligent and precise CRISPR delivery strategies in a controllable and safe manner is the prerequisite for translational clinical medicine in gene therapy field. In this review, the therapeutic application of CRISPR delivery and the translational potential of gene editing was firstly discussed. Critical obstacles for the delivery of CRISPR system in vivo and shortcomings of CRISPR system itself were also analyzed. Given that intelligent nanoparticles have demonstrated great potential on the delivery of CRISPR system, here we mainly focused on stimuli-responsive nanocarriers. We also summarized various strategies for CIRSPR-Cas9 system delivered by intelligent nanocarriers which would respond to different endogenous and exogenous signal stimulus. Moreover, new genome editors mediated by nanotherapeutic vectors for gene therapy were also discussed. Finally, we discussed future prospects of genome editing for existing nanocarriers in clinical settings.

10.
Journal of Integrative Medicine ; (12): 332-353, 2023.
Article in English | WPRIM | ID: wpr-982687

ABSTRACT

Acquired immune deficiency syndrome (AIDS) is a worldwide epidemic caused by human immunodeficiency virus (HIV) infection. Newer medicines for eliminating the viral reservoir and eradicating the virus are urgently needed. Attempts to locate relatively safe and non-toxic medications from natural resources are ongoing now. Natural-product-based antiviral candidates have been exploited to a limited extent. However, antiviral research is inadequate to counteract for the resistant patterns. Plant-derived bioactive compounds hold promise as powerful pharmacophore scaffolds, which have shown anti-HIV potential. This review focuses on a consideration of the virus, various possible HIV-controlling methods and the recent progress in alternative natural compounds with anti-HIV activity, with a particular emphasis on recent results from natural sources of anti-HIV agents. Please cite this article as: Mandhata CP, Sahoo CR, Padhy RN. A comprehensive overview on the role of phytocompounds in human immunodeficiency virus treatment. J Integr Med. 2023; 21(4):332-353.


Subject(s)
Humans , HIV , HIV Infections/drug therapy , Anti-HIV Agents/therapeutic use
11.
Journal of Experimental Hematology ; (6): 489-494, 2023.
Article in Chinese | WPRIM | ID: wpr-982085

ABSTRACT

OBJECTIVE@#To screen better promoters and provide more powerful tools for basic research and gene therapy of hemophilia.@*METHODS@#Bioinformatics methods were used to analyze the promoters expressing housekeeping genes with high abundance, so as to select potential candidate promoters. The GFP reporter gene vector was constructed, and the packaging efficiency of the novel promoter was investigated with EF1 α promoter as control, and the transcription and activities of the reporter gene were investigated too. The activity of the candidate promoter was investigated by loading F9 gene.@*RESULTS@#The most potential RPS6 promoter was obtained by screening. There was no difference in lentiviral packaging between EF1 α-LV and RPS6-LV, and their virus titer were consistent. In 293T cells, the transduction efficiency and mean fluorescence intensity of RPS6pro-LV and EF1 αpro-LV were proportional to the lentiviral dose. The transfection efficiency of both promoters in different types of cells was in the following order: 293T>HEL>MSC; Compared with EF1 αpro-LV, RPS6pro-LV could obtain a higher fluorescence intensity in MSC cells, and RPS6pro-LV was more stable in long-term cultured HEL cells infected with two lentiviruses respectively. The results of RT-qPCR, Western blot and FIX activity (FIX∶C) detection of K562 cell culture supernatant showed that FIX expression in the EF1 α-F9 and RPS6-F9 groups was higher than that in the unloaded control group, and there was no significant difference in FIX expression between the EF1 α-F9 and RPS6-F9 groups.@*CONCLUSION@#After screening and optimization, a promoter was obtained, which can be widely used for exogenous gene expression. The high stability and viability of the promoter were confirmed by long-term culture and active gene expression, which providing a powerful tool for basic research and clinical gene therapy of hemophilia.


Subject(s)
Humans , Transduction, Genetic , Genetic Vectors , Hemophilia A/genetics , Transfection , Blood Coagulation Factors/genetics , Lentivirus/genetics
12.
Chinese Journal of Contemporary Pediatrics ; (12): 759-766, 2023.
Article in Chinese | WPRIM | ID: wpr-982024

ABSTRACT

There are more than 7 000 rare diseases and approximately 475 million individuals with rare diseases globally, with children accounting for two-thirds of this population. Due to a relatively small patient population and limited financial resources allocated for drug research and development in pharmaceutical enterprises, there are still no drugs approved for the treatment of several thousands of these rare diseases. At present, there are no drugs for 95% of the patients with rare diseases, and consequently, the therapeutic drugs for rare diseases have been designated as orphan drugs. In order to guide pharmaceutical enterprises to strengthen the research and development of orphan drugs, various nations have enacted the acts for rare disease drugs, promoted and simplified the patent application process for orphan drugs, and provided scientific recommendations and guidance for the research and development of orphan drugs. Since there is a relatively high incidence rate of rare diseases in children, this article reviews the latest research on pharmacotherapy for children with rare diseases.


Subject(s)
Humans , Child , Rare Diseases/drug therapy , Orphan Drug Production , Pharmaceutical Preparations
13.
Singapore medical journal ; : 17-26, 2023.
Article in English | WPRIM | ID: wpr-969661

ABSTRACT

Inherited ocular diseases comprise a heterogeneous group of rare and complex diseases, including inherited retinal diseases (IRDs) and inherited optic neuropathies. Recent success in adeno-associated virus-based gene therapy, voretigene neparvovec (Luxturna®) for RPE65-related IRDs, has heralded rapid evolution in gene therapy platform technologies and strategies, from gene augmentation to RNA editing, as well as gene agnostic approaches such as optogenetics. This review discusses the fundamentals underlying the mode of inheritance, natural history studies and clinical trial outcomes, as well as current and emerging therapies covering gene therapy strategies, cell-based therapies and bionic vision.


Subject(s)
Humans , Eye Diseases/therapy
14.
Singapore medical journal ; : 7-16, 2023.
Article in English | WPRIM | ID: wpr-969660

ABSTRACT

There are more than 7,000 paediatric genetic diseases (PGDs) but less than 5% have treatment options. Treatment strategies targeting different levels of the biological process of the disease have led to optimal health outcomes in a subset of patients with PGDs, where treatment is available. In the past 3 decades, there has been rapid advancement in the development of novel therapies, including gene therapy, for many PGDs. The therapeutic success of treatment relies heavily on knowledge of the genetic basis and the disease mechanism. Specifically, gene therapy has been shown to be effective in various clinical trials, and indeed, these trials have led to regulatory approvals, paving the way for gene therapies for other types of PGDs. In this review, we provide an overview of the treatment strategies and focus on some of the recent advancements in therapeutics for PGDs.


Subject(s)
Child , Humans , Genetic Diseases, Inborn/therapy , Genetic Therapy
15.
Rev. bras. oftalmol ; 82: e0041, 2023. tab, graf
Article in Portuguese | LILACS | ID: biblio-1507880

ABSTRACT

RESUMO A neuropatia óptica hereditária de Leber é uma doença mitocondrial hereditária neurodegenerativa. A taxa potencial de recuperação espontânea é controversa na literatura. A terapia genética tem sido estudada como suporte aos pacientes. O objetivo desta revisão foi avaliar qualitativamente a segurança, os efeitos adversos e a eficácia da terapia gênica disponível. Trata-se de uma revisão sistemática de artigos indexados nas bases de dados PubMed®, Biblioteca Virtual em Saúde, SciELO, Cochrane, ScienceDirect, Scopus e Lilacs no primeiro semestre de 2021. Os critérios de inclusão e filtros foram: artigos relacionados ao tema, estudos randomizados, ensaios clínicos, trabalhos em humanos, últimos 5 anos, nas línguas portuguesa, inglesa e espanhola e texto completo disponível gratuitamente. Os parâmetros de exclusão foram: artigos duplicados, fuga ao tema, artigos de revisão, trabalhos não disponíveis e que fugiam aos critérios de inclusão. O coeficiente de kappa foi 0,812. A terapia não apresentou efeitos adversos sérios em nenhum dos artigos selecionados, e os efeitos menores sofreram 100% de remissão espontânea após o tratamento. Apesar de NAbs terem sido encontrados no soro de alguns pacientes, não houve associação entre a resposta imune adaptativa e a injeção do vetor viral. O tratamento foi eficaz na melhora da acuidade e campo visual. Vários estudos confirmaram a eficácia da terapia gênica, em doses baixas e médias, na melhora da acuidade visual e também sobre os efeitos adversos comuns relacionados à altas doses. A resposta imune humoral e a variação dos NAbs no soro foi citada em mais de um artigo. A terapia foi eficaz na melhora da acuidade visual e os efeitos adversos que surgiram foram tratados facilmente. No entanto, a resposta imune humoral ainda precisa ser estudada.


ABSTRACT Leber's Hereditary Optic Neuropathy (LHON) is an inherited neurodegenerative mitochondrial disease. The potential rate of spontaneous recovery is controversial in the literature. Gene therapy has been studied to support patients. The objective of this review was to qualitatively assess the safety, adverse effects, and efficacy of available gene therapy. This is a systematic review of articles indexed in PubMed®, VHL, SciELO, Cochrane, ScienceDirect, Scopus, and Lilacs databases, in the first half of 2021. Inclusion criteria and filters were: articles related to the topic, randomized studies, clinical trials, work in humans, last 5 years, in Portuguese, English, and Spanish and full text available for free. The exclusion parameters were: duplicate articles, not related to the topic, review articles, not available works, and works that did not meet the inclusion criteria. The kappa coefficient was 0.812. The therapy had no serious adverse effects in any of the selected articles, and minor effects experienced 100% spontaneous remission after treatment. Although NAbs were found in the serum of some patients, there was no association between the adaptive immune response and the injection of the viral vector. The treatment was effective in improving acuity and visual field. Several studies have confirmed the effectiveness of gene therapy, at low and medium doses, in improving visual acuity and also on common adverse effects related to high doses. The humoral immune response and the variation in serum NAbs was cited in more than one article. The therapy was effective in improving visual acuity and the adverse effects that arose were easily treated. However, the humoral immune response still needs to be studied.


Subject(s)
Humans , Genetic Therapy/methods , Optic Atrophy, Hereditary, Leber/genetics , Optic Atrophy, Hereditary, Leber/therapy , Genetic Therapy/adverse effects , Adenoviridae , Treatment Outcome , Intravitreal Injections , NADH Dehydrogenase/genetics , NADH Dehydrogenase/therapeutic use
16.
Chinese Journal of Ocular Fundus Diseases ; (6): 701-707, 2023.
Article in Chinese | WPRIM | ID: wpr-995686

ABSTRACT

Vascular endothelial growth factor (VEGF) is a multifunctional factor that promotes blood vessel formation and increases vascular permeability. Its abnormal elevation plays a key role in common retinal diseases such as wet age-related macular degeneration and diabetic macular edema. Anti-VEGF therapy can inhibit angiogenesis, reduce vascular leakage and edema, thereby delaying disease progression and stabilizing or improving vision. Currently, the clinical application of anti-VEGF drugs has achieved satisfactory therapeutic effects, but there are also issues such as high injection frequency, heavy economy burden, potential systemic side effects, and non-responsiveness. To address these issues, current research and development mainly aim on biosimilars, multi-target drugs, drug delivery systems, oral anti-VEGF drugs, and gene therapy. Some drugs have shown great potential and are expected to turn over a new leaf for anti-VEGF treatment in ophthalmology.

17.
Chinese Journal of Ocular Fundus Diseases ; (6): 438-443, 2023.
Article in Chinese | WPRIM | ID: wpr-995648

ABSTRACT

Ocular fundus diseases is a kind of ophthalmic diseases that occur in the vitreous, retina, choroid and optic nerve, including a series of pathophysiological changes such as inflammation, exudation and proliferation. Because of high morbidity and high blindness rate, ocular fundus diseases has been paid more and more attention from medical community. With the continuous deepening of research on its etiology, anatomy and pathological mechanism in recent years, clinicians have obtained more abundant treatment methods than in the past, and the medical treatment of ocular fundus diseases have made many phased progress. However, due to its wide spectrum of diseases and complex pathological mechanism, clinicians still need to further explore more effective treatment methods, and improve the effect of diagnosis and treatment to ocular fundus diseases.

18.
Chinese Journal of Urology ; (12): 237-240, 2023.
Article in Chinese | WPRIM | ID: wpr-994015

ABSTRACT

Primary hyperoxaluria (PH) is a rare autosomal recessive hereditary disease, characterized by calcium oxalate kidney stone and nephrocalcinosis caused by defects in enzymes of liver glyoxylate metabolism. Up to now, treatment options for PH are limited. Although medication treatment and liver transplantation can slow down the progression and mitigate the symptoms, the evidence for them turned out to be weak. In recent years, breakthroughs in biotechnology provide novel promising directions for drug development. Small interfering RNA drugs, such as lumasiran and nedosiran, selectively reduce hepatic expression of glycolate oxidase and lactate dehydrogenase respectively, reducing hepatic oxalate production and urinary oxalate levels in PH patients. Gene-editing, such as CRISPR/Cas9, will be a potential treatment method of PH. This review encompasses recent developments in the gene therapy of PH.

19.
Indian J Biochem Biophys ; 2022 Nov; 59(11): 1027-1038
Article | IMSEAR | ID: sea-221591

ABSTRACT

Genetic engineering has made sizeable contributions to technical innovation, agriculture, and the development of pharmaceuticals. Various approaches were evolved to control the genetic cloth of cells using both viral and nonviral vector architectures. Gene therapy aims to reverse pathological traits with the aid of the use of viral and nonviral gene shipping mechanisms. Gene transfer motors have made massive strides in becoming more environmentally pleasant, much less risky, and nonimmunogenic, as well as making an allowance for lengthy-time period transgene expression. One of the most tough components of correctly enforcing gene healing treatments in the clinical putting is adjusting gene expression extremely tightly and constantly as and while it's required. This research work will cognizance on using viral vectors for gene concentrated on biological applications with various gene expressions. Due to improvements in viral vector engineering and superior gene regulatory systems to permit and adjust tightly therapeutic gene expression, the technology for using genes to offer a preferred treatment has confirmed to be an effective approach

20.
Rev. cuba. med ; 61(3)sept. 2022.
Article in Spanish | LILACS, CUMED | ID: biblio-1441682

ABSTRACT

Introducción: El aumento de la resistencia a los antimicrobianos constituye actualmente una peligrosa amenaza para la salud. Ante este problema global de falta de antimicrobianos, es perentorio intervenir de forma coordinada e idear fórmulas para incentivar la investigación a nivel internacional. Objetivo: Realizar una revisión actualizada sobre las causas y mecanismos de la resistencia a los antibióticos y la adaptación del sistema CRISPR/Cas para el desarrollo de innovadores antimicrobianos como parte esencial de una estrategia altamente específica en el tratamiento de infecciones producidas por bacterias resistentes. Métodos: Se realizó una revisión documental, se empleó la bibliografía nacional e internacional especializada publicada en los últimos 5 años. Se utilizó el motor de búsqueda Google Académico y se consultaron artículos de libre acceso en las bases de datos Pubmed, SciELO, LILACS, CUMED y HINARI, en el período comprendido entre marzo de 2020 hasta el mes de enero de 2021. Se revisaron un total de 41 artículos. Las consultas se hicieron en inglés y español. Para la búsqueda se tuvo en cuenta las palabras clave: eligobióticos; resistencia a antibióticos; CRISPR/Cas. Resultados: La evidencia recopilada sustenta que muchas enfermedades son inducidas por alteraciones del equilibrio de la microbiota humana y la técnica de edición genética CRISPR/Cas permitirá el desarrollo de novedosos antibióticos como los eligobióticos que eliminarán las bacterias patógenas multirresistentes y dejarán intacto el microbioma. Conclusiones: el esclarecimiento de los enigmas de la microbiota y su diseño con terapia génica permitirán el progreso de innovadores antibióticos con empleo del sistema CRISPR/Cas que ineludiblemente modificarán la práctica médica para siempre(AU)


Introduction: The increase in antimicrobial resistance is currently a dangerous threat to health. Faced with this global problem of lack of antimicrobials, it is imperative to intervene in a coordinated manner and devise formulas to encourage research at the international level. Objective: To review on the update causes and mechanisms of antibiotic resistance and the adaptation of CRISPR/Cas system for the development of innovative antimicrobials as an essential part of a highly specific strategy in the treatment of infections caused by resistant bacteria. Methods: A documentary review was carried out in the specialized national and international bibliography published in the last 5 years. Google Scholar search engine was used and free access articles were consulted in Pubmed, SciELO, LILACS, CUMED and HINARI databases, from March 2020 to January 2021. A total of 41 articles were retrieved. The consultations were made in English and Spanish. For the search, we took into account the keywords eligobiotics, antibiotic resistance, CRISPR/Cas. Results: The reviewed evidence supports that many diseases are induced by alterations in the balance of the human microbiota; and CRISPR/Cas gene editing technique will allow the development of novel antibiotics such as eligobiotics that will eliminate multi-resistant pathogenic bacteria and leave the microbiome intact. Conclusions: The clarification of the enigmas of the microbiota and its design with gene therapy will allow the progress of innovative antibiotics using CRISPR/Cas system that will inevitably change medical practice forever(AU)


Subject(s)
Humans , Male , Female , Drug Resistance, Microbial/drug effects , Genetic Therapy/methods , Reference Drugs
SELECTION OF CITATIONS
SEARCH DETAIL